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Introduction



Collaborators

• PhD students - postdocs: W. Jiang, M. Le Morvan, I. Mayer, G. Robin

(former), A. Sportisse

• Colleagues: C. Boyer (LPSM), G. Bogdan (Wroclaw), F. Husson

(Agrocampus) - (package missMDA), J-P Nadal (EHESS), E. Scornet (X), G.

Varoquaux (INRIA), S. Wager (Stanford)

• Traumabase (hospital): T. Gauss, S. Hamada, J-D Moyer/ Capgemini
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Traumabase

• 20000 patients

• 250 continuous and categorical variables: heterogeneous

• 11 hospitals: multilevel data

• 4000 new patients/ year

Center Accident Age Sex Weight Lactactes BP shock . . .

Beaujon fall 54 m 85 NM 180 yes

Pitie gun 26 m NR NA 131 no

Beaujon moto 63 m 80 3.9 145 yes

Pitie moto 30 w NR Imp 107 no

HEGP knife 16 m 98 2.5 118 no
...

. . .

⇒ Estimate causal effect: Administration of the treatment

”tranexamic acid” (within 3 hours after the accident) on the outcome

mortality for traumatic brain injury patients
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Traumabase

• 20000 patients

• 250 continuous and categorical variables: heterogeneous

• 11 hospitals: multilevel data

• 4000 new patients/ year

Center Accident Age Sex Weight Lactactes BP shock . . .

Beaujon fall 54 m 85 NM 180 yes

Pitie gun 26 m NR NA 131 no

Beaujon moto 63 m 80 3.9 145 yes

Pitie moto 30 w NR Imp 107 no

HEGP knife 16 m 98 2.5 118 no
...

. . .

⇒ Predict the risk of hemorrhagic shock given pre-hospital features

Ex random forests/logistic regression with covariates with missing values

⇒
Estimate causal effect: Administration of the treatment ”tranexamic

acid” (within 3 hours after the accident) on the outcome mortality for

traumatic brain injury patients
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Missing values
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Multilevel data/ data integration: Systematic missing variable in one hospital
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Complete-case analysis
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?lm, ?glm, na.action = na.omit

”One of the ironies of Big Data is that missing data play an ever more

significant role” (R. Sameworth, 2019)

An n × p matrix, each entry is missing with probability 0.01

p = 5 =⇒ ≈ 95% of rows kept

p = 300 =⇒ ≈ 5% of rows kept
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Handling missing values

(inferential framework)



Solutions to handle missing values

Books: Schafer (2002), Little & Rubin (2002); Kim & Shao (2013); Carpenter & Kenward (2013);

van Buuren (2018), etc.

Modify the estimation process to deal with missing values

Maximum likelihood: EM algorithm to obtain point estimates +

Supplemented EM (Meng & Rubin, 1991) / Louis formulae for their variability

Ex logistic regression: EM to get β̂ + Louis to get V̂ (β̂)

Cons: Difficult to establish - not many softwares even for simple models

One specific algorithm for each statistical method...

Imputation (multiple) to get a complete data set

Any analysis can be performed

Ex logistic regression: Impute and apply logistic model to get β̂, V̂ (β̂)

Aim: Estimate parameters & their variance from an incomplete data

⇒ Inferential framework
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Mean imputation

• (xi , yi ) ∼
i.i.d.
N2((µx , µy ),Σxy )

• 70 % of missing entries completely at random on Y

• Estimate parameters on the mean imputed data

X Y
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Mean imputation

• (xi , yi ) ∼
i.i.d.
N2((µx , µy ),Σxy )

• 70 % of missing entries completely at random on Y

• Estimate parameters on the mean imputed data

X Y

-0.56 NA

-0.86 NA

..... ...
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Mean imputation

• (xi , yi ) ∼
i.i.d.
N2((µx , µy ),Σxy )

• 70 % of missing entries completely at random on Y

• Estimate parameters on the mean imputed data

X Y
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Mean imputation deforms joint and marginal distributions
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Mean imputation is bad for estimation
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Variables factor map (PCA)

Dim 1 (91.18%)

D
im

 2
 (

4.
97

%
)

LL

LMA

Nmass
Pmass

Amass

Rmass

library(FactoMineR)

PCA(ecolo)

Warning message: Missing

are imputed by the mean

of the variable:

You should use imputePCA

from missMDA

library(missMDA)

imp <- imputePCA(ecolo)

PCA(imp$comp)

Ecological data: 1 n = 69000 species - 6 traits. Estimated correlation between

Pmass & Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)

1Wright, I. et al. (2004). The worldwide leaf economics spectrum. Nature.
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Imputation methods

• by regression takes into account the relationship: Estimate β - impute

ŷi = β̂0 + β̂1xi ⇒ variance underestimated and correlation overestimated

• by stochastic reg: Estimate β and σ - impute from the predictive

yi ∼ N
(
xi β̂, σ̂

2
)
⇒ preserve distributions

Here β̂, σ̂2 estimated with complete data, but MLE can be obtained with EM
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Imputation methods for multivariate data

Assuming a joint model

• Gaussian distribution: xi. ∼ N (µ,Σ) (Amelia Honaker, King, Blackwell)

• low rank: Xn×d = µn×d + ε εij
iid∼N

(
0, σ2

)
with µ of low rank k

(softimpute Hastie & Mazuder; missMDA J. & Husson)

• latent class - nonparametric Bayesian (dpmpm Reiter)

• deep learning using variational autoencoders (MIWAE, Mattei, 2018)

Using conditional models (joint implicitly defined)

• with logistic, multinomial, poisson regressions (mice van Buuren)

• iterative impute each variable by random forests (missForest Stekhoven)

Imputation for categorical, mixed, blocks/multilevel data 2, etc.

⇒ Missing values taskview3 J., Mayer., Tierney, Vialaneix

2J., Husson, Robin & Narasimhan. (2018). Imputation of mixed data with multilevel SVD.
3https://cran.r-project.org/web/views/MissingData.html
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Random forests versus PCA

Feat1 Feat2 Feat3 Feat4 Feat5...

C1 1 1 1 1 1

C2 1 1 1 1 1

C3 2 2 2 2 2

C4 2 2 2 2 2

C5 3 3 3 3 3

C6 3 3 3 3 3

C7 4 4 4 4 4

C8 4 4 4 4 4

C9 5 5 5 5 5

C10 5 5 5 5 5

C11 6 6 6 6 6

C12 6 6 6 6 6

C13 7 7 7 7 7

C14 7 7 7 7 7

Igor 8 NA NA 8 8

Frank 8 NA NA 8 8

Bertrand 9 NA NA 9 9

Alex 9 NA NA 9 9

Yohann 10 NA NA 10 10

Jean 10 NA NA 10 10

Missing

Feat1 Feat2 Feat3 Feat4 Feat5

1 1.0 1.00 1 1

1 1.0 1.00 1 1

2 2.0 2.00 2 2

2 2.0 2.00 2 2

3 3.0 3.00 3 3

3 3.0 3.00 3 3

4 4.0 4.00 4 4

4 4.0 4.00 4 4

5 5.0 5.00 5 5

5 5.0 5.00 5 5

6 6.0 6.00 6 6

6 6.0 6.00 6 6

7 7.0 7.00 7 7

7 7.0 7.00 7 7

8 6.87 6.87 8 8

8 6.87 6.87 8 8

9 6.87 6.87 9 9

9 6.87 6.87 9 9

10 6.87 6.87 10 10

10 6.87 6.87 10 10

missForest

Feat1 Feat2 Feat3 Feat4 Feat5

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

3 3 3 3 3

3 3 3 3 3

4 4 4 4 4

4 4 4 4 4

5 5 5 5 5

5 5 5 5 5

6 6 6 6 6

6 6 6 6 6

7 7 7 7 7

7 7 7 7 7

8 8 8 8 8

8 8 8 8 8

9 9 9 9 9

9 9 9 9 9

10 10 10 10 10

10 10 10 10 10

imputePCA

⇒ Imputation inherits from the method: RF (computationaly costly)

good for non linear relationships / PCA good for linear relationships
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Single imputation: Underestimation of the variability

⇒ Incomplete Traumabase

X1 X2 X3 ... Y

NA 20 10 ... shock

-6 45 NA ... shock

0 NA 30 ... no shock

NA 32 35 ... shock

-2 NA 12 ... no shock

1 63 40 ... shock

⇒ Completed Traumabase

X1 X2 X3 ... Y

3 20 10 ... shock

-6 45 6 ... shock

0 4 30 ... no shock

-4 32 35 ... shock

-2 75 12 ... no shock

1 63 40 ... shock

A single value can’t reflect the uncertainty of prediction

Multiple impute 1) Generate M plausible values for each missing value

X1 X2 X3 Y

3 20 10 s

-6 45 6 s

0 4 30 no s

-4 32 35 s

-2 75 12 no s

1 63 40 s

X1 X2 X3 Y

-7 20 10 s

-6 45 9 s

0 12 30 no s

13 32 35 s

-2 10 12 no s

1 63 40 s

X1 X2 X3 Y

7 20 10 s

-6 45 12 s

0 -5 30 no s

2 32 35 s

-2 20 12 no s

1 63 40 s

library(mice); mice(traumadata)

library(missMDA); MIPCA(traumadata)
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library(mice); mice(traumadata)

library(missMDA); MIPCA(traumadata)
13



Visualization of the imputed values

X1 X2 X3 Y

3 20 10 s

-6 45 6 s

0 4 30 no s

-4 32 35 s

-2 15 12 no s

1 63 40 s

X1 X2 X3 Y

-7 20 10 s

-6 45 9 s

0 12 30 no s

13 32 35 s

-2 10 12 no s

1 63 40 s

X1 X2 X3 Y

7 20 10 s

-6 45 12 s

0 -5 30 no s

2 32 35 s

-2 20 12 no s

1 63 40 s

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4

Supplementary projection

Dim 1 (71.33%)

D
im

 2
 (

16
.9

4%
)

1
2

3

4

5

6

7
8

910

11

12

library(missMDA)

MIPCA(traumadata)

library(Amelia)

?compare.density

Percentage of NA?
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Multiple imputation

1) Generate M plausible values for each missing value

X1 X2 X3 Y

3 20 10 s

-6 45 6 s

0 4 30 no s

-4 32 35 s

1 63 40 s

-2 15 12 no s

X1 X2 X3 Y

-7 20 10 s

-6 45 9 s

0 12 30 no s

13 32 35 s

1 63 40 s

-2 10 12 no s

X1 X2 X3 Y

7 20 10 s

-6 45 12 s

0 -5 30 no s

2 32 35 s

1 63 40 s

-2 20 12 no s

2) Perform the analysis on each imputed data set: β̂m, V̂ar
(
β̂m

)
3) Combine the results (Rubin’s rules):

β̂ =
1

M

M∑
m=1

β̂m

T =
1

M

M∑
m=1

V̂ar
(
β̂m

)
+

(
1 +

1

M

)
1

M − 1

M∑
m=1

(
β̂m − β̂

)2
imp.mice <- mice(traumadata)

lm.mice.out <- with(imp.mice, glm(Y ~ ., family = "binomial"))

⇒ Variability of missing values taken into account 15



Supervised learning with missing

values



On the consistency of supervised learning with missing values.

(2019). J., Prost, Scornet & Varoquaux

• A feature matrix X and a response vector Y

• Find a prediction function that minimizes the expected risk

Bayes rule: f ? ∈ arg min
f :X→Y

E [`(f (X),Y )]; f ?(X) = E[Y |X]

• Empirical risk: f̂Dn,train ∈ arg min
f :X→Y

(
1
n

∑n
i=1 ` (f (Xi ),Yi )

)
A new data Dn,test to estimate the generalization error rate

• Bayes consistent: E[`(f̂n(X),Y )] −−−→
n→∞

E[`(f ?(X),Y )]

Differences with classical litterature

• explicitely consider the response variable Y - Aim: Prediction

• two data sets (out of sample) with missing values: Train & test sets

⇒ Is it possible to use previous approaches (EM - impute), consistent?

⇒ Do we need to design new ones?
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On the consistency of supervised learning with missing values.
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Imputation prior to learning

Impute the train with îtrain learn a model f̂train with X̂train,Ytrain

Impute the test with the same imputation îtrain - predict X̂test with f̂train

NA NA

NA

NA

NA NA

NA

Xtrain Ytrain

NA NA

NA

NA

NA NA

NA

Xtest

Same imputation îtrain îtrain

X̂train Ytrain X̂test Ŷtest

f̂train

Prediction model 17



Imputation prior to learning

Imputation with the same model

Easy to implement for univariate imputation: The means (µ̂1, ..., µ̂d) of

each colum of the train. Also OK for Gaussian imputation.

Issue: Many methods are ”black-boxes” and take as an input the

incomplete data and output the completed data (mice, missForest)

Separate imputation

Impute train and test separately (with a different model)

Issue: Depends on the size of the test set? one observation?

Group imputation/ semi-supervised

Impute train and test simultaneously but the predictive model is learned

only on the training imputed data set

Issue: Sometimes no training set at test time

18



Imputation with the same model: Mean imputation consistent

Learn on the mean-imputed training data, impute the test set with the

same means and predict is optimal if the missing data are MAR and the

learning algorithm is universally consistent

Framework - assumptions

• Y = f (X) + ε

• X = (X1, . . . ,Xd) has a continuous density g > 0 on [0, 1]d

• ‖f ‖∞ <∞
• Missing data MAR on X1 with M1 |= X1|X2, . . . ,Xd .

• (x2, . . . , xd) 7→ P[M1 = 1|X2 = x2, . . . ,Xd = xd ] is continuous

• ε is a centered noise independent of (X,M1)

(remains valid when missing values occur for variables X1, . . . , Xj)

19



Imputation with the same model: Mean imputation consistent

Learn on the mean-imputed training data, impute the test set with the

same means and predict is optimal if the missing data are MAR and the

learning algorithm is universally consistent

Mean imputed entry x′ = (x ′1, x2, . . . , xd): x ′1 = x11M1=0 + E[X1]1M1=1

Note the data: X̃ = X� (1−M) + NA�M (takes value in R ∪ {NA})

Theorem

Prediction with mean is equal to the Bayes function almost everywhere

f ?impute(x
′) = f̃ ?(X̃) = E[Y |X̃ = x̃]

Other values than the mean are OK but use the same value for the train

and test sets, otherwise the algorithm may fail as the distributions differ

19



Consistency of supervised learning with NA: Rationale

• Specific value, systematic like a code for missing

• The learner detects the code and recognizes it at the test time

• With categorical data, just code ”Missing”

• With continuous data, any constant:

• Need a lot of data (asymptotic result) and a super powerful learner
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Train Test

Mean imputation not bad for prediction; it is consistent; despite its

drawbacks for estimation - Useful in practice!
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Consistency of supervised learning with NA: Rationale

• Specific value, systematic like a code for missing

• The learner detects the code and recognizes it at the test time

• With categorical data, just code ”Missing”

• With continuous data, any constant: out of range

• Need a lot of data (asymptotic result) and a super powerful learner

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

−3 −2 −1 0 1 2 3

−
5

0
5

10

x

y

● ●● ●●●● ● ●●● ●● ●● ●● ●● ●● ● ●●●● ● ● ●●● ● ● ●● ●● ●●● ● ●● ● ●● ●●●● ●● ● ●● ●● ●●● ●● ●●●● ● ●● ● ●●● ● ●● ●● ●●● ● ●●●● ● ●●● ●●● ● ●●● ● ●●● ● ●● ●● ●● ● ●●●● ● ●● ● ●● ●●● ●● ● ●●● ● ●●●● ●● ● ●● ●● ●●● ● ●●● ●● ● ● ●● ●●●● ● ● ●● ●● ● ●● ●● ●●●● ●●● ● ● ● ●● ●● ● ●●● ● ●● ●●● ● ●● ●●● ● ● ●●● ● ●● ●●● ●● ●● ●●● ●● ● ●● ●●● ● ● ●● ●●● ● ●●● ●● ●●● ● ● ●●●● ●● ●● ● ●●● ●●● ●● ●●●●● ●●●●● ●●● ●● ●●● ● ●●● ●● ● ●● ●● ●●● ● ●● ●● ●●● ●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3
−

5
0

5
10

x

y

● ●●● ●● ● ●● ●● ●●●● ●● ●● ●● ●● ●●● ● ●●● ●●● ●● ●● ●● ● ●● ●●● ●● ●●●● ●● ● ●● ●● ●● ●● ● ●● ● ● ●●●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●● ● ●● ●● ●●●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●●●●● ●● ●●● ●● ● ● ●● ● ●●●● ●● ●●

Train Test

Mean imputation not bad for prediction; it is consistent; despite its

drawbacks for estimation - Useful in practice!
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End-to-end learning with missing values

NA NA

NA

NA

NA NA

NA

Xtrain Ytrain

NA NA

NA

NA

NA NA

NA

Xtest Ŷtest

f̂

prediction learner

• Trees well suited for empirical risk minimization with missing values:

Handle half discrete data X̃ that takes values in R ∪ {NA}
• Random forests powerful learner
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Consistency: 40% missing values MCAR
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Discussion - challenges



Take home message EM/imputation

• Few implementation of EM strategies

“ The idea of imputation is both seductive and dangerous”. It is

seductive because it can lull the user into the pleasurable state of believing that the data are

complete after all, and it is dangerous because it lumps together situations where the problem is

sufficiently minor that it can be legitimately handled in this way and situations where standard

estimators applied to the imputed data have substantial biases.” (Dempster & Rubin, 1983)

• Single imputation aims at completing a dataset as best as possible

• Multiple imputation aims at estimating the parameters and their

variability taking into account the uncertainty of the missing values

• Single imputation can be appropriate for point estimates

• Both % of NA & structure matter (5% of NA can be an issue)

Principal component methods powerful for single & multiple imputation of

quanti & categorical data: Dimensionality reduction and capture similarities

between observations and variables. missMDA package
23



Take-home message supervised learning

• Incomplete train and test → same imputation model

• Single mean imputation is consistent given a powerful learner

• Empirically, good imputation methods reduce the number of samples

required to reach good prediction

Tree-based models :

• Missing Incorporated in Attribute optimizes not only the split but

also the handling of the missing values

• Informative missing data: Adding the mask helps imputation - MIA

To be done

• Nonasymptotic results

• Uncertainty associated with the prediction

• Distributional shift: No missing values in the test set?

• Prove the usefulness of methods in MNAR
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Still an active area of research! Join this exciting field!

Current works

• Variable selection in high dimension Adaptive bayesian SLOPE with missing

values. 2019. Jiang, Bogdan, J., Miasojedow, Rockova & TraumaBase

• MNAR missing values

• Contribution of causality for missing data

- Graphical Models for Processing Missing Data. 2019. Mohan, Pearl.

- Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not

At Random data. 2019. Sportisse, Boyer, J.

• Contribution of neural nets J., Prost, Scornet, Varoquaux

Other challenges

• MI theory: Good theory for regression parameters but others? Theory

with other asymptotic small n, large p ?, etc.

• Practical imputation issues: Imputation not in agreement (X & X 2),

imputation out of range? problems of logical bounds (> 0), etc.
25



Ressources

R-miss-tastic https://rmisstastic.netlify.com/R-miss-tastic

J., I. Mayer, N. Tierney & N. Vialaneix

Project funded by the R consortium (Infrastructure Steering Committee)4

Aim: a reference platform on the theme of missing data management

• list existing packages

• available literature

• tutorials

• analysis workflows on data

• main actors

⇒ Federate the community

⇒ Contribute!
4https://www.r-consortium.org/projects/call-for-proposals
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Ressources

Examples:

• Lecture 5 - General tutorial : Statistical Methods for Analysis with

Missing Data (Mauricio Sadinle)

• Lecture - Multiple Imputation: mice by Nicole Erler 6

• Longitudinal data, Time Series Imputation (Steffen Moritz - very

active contributor of r-miss-tastic), Principal Component Methods7

5https://rmisstastic.netlify.com/lectures/
6https://rmisstastic.netlify.com/tutorials/erler_course_

multipleimputation_2018/erler_practical_mice_2018
7https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf
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Thank you
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